千萬建筑資料下載 →
2-6 已知在零初始條件下,系統(tǒng)的單位階躍響應(yīng)為 c(t)?1?2e?2t?e?t,試求系統(tǒng)的傳遞函數(shù)和脈沖響應(yīng)。
解 單位階躍輸入時,有R(s)?1,依題意 s
C(s)?1213s?21???? ss?2s?1(s?1)(s?2)s
?G(s)?C(s)3s?2 ?R(s)(s?1)(s?2)
4???1?2t?t k(t)?L?1?G(s)??L?1???4e?e?s?1s?2??
2-7 已知系統(tǒng)傳遞函數(shù) C(s)2?(0)?0,試?2,且初始條件為c(0)??1,cR(s)s?3s?2
求系統(tǒng)在輸入r(t)?1(t)作用下的輸出c(t)。
解 系統(tǒng)的微分方程為
d2c(t)dc(t)?3?2c(t)?2r(t) (1) dtdt2
考慮初始條件,對式(1)進行拉氏變換,得
s2C(s)?s?3sC(s)?3?2C(s)?2 (2) s
s2?3s?2142 C(s)??2???s(s?3s?2)ss?1s?2
?c(t)?1?4e?t?2e?2t
2-9 某位置隨動系統(tǒng)原理框圖如題2-9圖所示,已知電位器最大工作角度Qm=3300,功率放大器放大系數(shù)為k3。
(1) 分別求出電位器的傳遞函數(shù)k0,第一級和第二級放大器的放大系數(shù)k1,k2;
(2) 畫出系統(tǒng)的結(jié)構(gòu)圖;
(3) 求系統(tǒng)的閉環(huán)傳遞函數(shù)Qc(s)Qr(s)。
解
(1) 電位器的傳遞函數(shù)
EK0??Qm303300?18001800? 11?
根據(jù)運算放大器的特性,可分別寫出兩級放大器的放大系數(shù)為
30?10320?103
K1????3, K2????2 10?10310?103
(2) 可畫出系統(tǒng)結(jié)構(gòu)如圖解2-9所示:
K0K1K2K3Km
Q(s)s(Tms?1) (3) c ?Qr(s)1?23mt?0123m
Tms?1s(Tms?1)
?1 Tm1?KKKK23mts2?s?1K0K1K2K3KmK0K1K2K3Km
3-10 機器人控制系統(tǒng)結(jié)構(gòu)圖如題3-10圖所示。試確定參數(shù)K1,K2值,使系統(tǒng)階躍響應(yīng)的峰值時間tp?0.5(s)
???e??????0.02??由 ? 聯(lián)立求解得 tp??0.5???2?n?
比較?(s)分母系數(shù)得 ???0.78 ???n?10
?K1??n2?100??K?2??n?1?0.146
2?K1?
3-11某典型二階系統(tǒng)的單位階躍響應(yīng)如題3-11圖所示。試確定系統(tǒng)的閉環(huán)傳遞函數(shù)。
n ?(s)?22s?2??ns??n
由階躍響應(yīng)曲線有:
h(?)?lims?(s)R(s)?lims?(s)?s?0s?01?K??2 s
??t??2p?2??n?? ????e?????2?2.5?2?25?2?
???0.404聯(lián)立求解得 ?,所以有 ??1.717?n
2?1.71725.9?(s)?2? s?2?0.404?1.717s?1.7172s2?1.39s?2.95
3-17單位反饋系統(tǒng)的開環(huán)傳遞函數(shù)為
G(s)?K s(s?3)(s?5)
為使系統(tǒng)特征根的實部不大于-1,試確定開環(huán)增益的取值范圍。
解 系統(tǒng)開環(huán)增益 Kk?K。特征方程為:
D(s)?s3?8s2?15s?K?0
做代換 s?s??1 有:
D(s?)?(s??1)3?8(s?1)2?15(s??1)?K?s?3?5s?2?2s??(K?8)?0
Routh : S3 1 2
S2 5K-8
S 18?K?5K?18
K?8 S0K-8 ?
使系統(tǒng)穩(wěn)定的開環(huán)增益范圍為:
8K18?Kk? 。 151515
王博仕自動控制原理總結(jié).doc下載
3-22 系統(tǒng)結(jié)構(gòu)圖如題3-22圖所示。試求局部反饋加入前后系統(tǒng)的靜態(tài)位置誤差系數(shù)、靜態(tài)速度誤差系數(shù)和靜態(tài)加速度誤差系數(shù)。
解 局部反饋加入前,系統(tǒng)開環(huán)傳遞函數(shù)為
G(s)?10(2s?1) 2s(s?1)
Kp?limG(s)??s?0
Kv?limsG(s)?? s?0
Ka?lims2G(s)?10 s?0
局部反饋加入后,系統(tǒng)開環(huán)傳遞函數(shù)為
10
2s?1s(s?110(2s?1))G(s)??? 220ss(s?s?20)1?(s?1)
Kp?limG(s)?? s?0
Kv?limsG(s)?0.5 s?0
Ka?lims2G(s)?0 s?0
4-4單位反饋系統(tǒng)的開環(huán)傳遞函數(shù)如下,試概略繪出相應(yīng)的根軌跡。
K*(s?2)⑴ G(s)? (s?1?j2)(s?1?j2)
K*(s?20)⑵ G(s)? s(s?10?j10)(s?10?j10)
K*(s?2)解 ⑴ G(s)? (s?1?j2)(s?1?j2)
根軌跡繪制如下:
① 實軸上的根軌跡:???,?2?
111② 分離點:??d?1?j2d?1?j2d?2
解之得:d ??4.23
③ 起始角:
?p?180??63.435??90??153.43? 1
由對稱性得另一起始角為 –153.43。
根軌跡如圖解4-4(a)所示。
?
K*(s?20)⑵ G(s)? s(s?10?j10)(s?10?j10)
系統(tǒng)有三個開環(huán)極點和一個開環(huán)零點。
根軌跡繪制如下:
① 實軸上的根軌跡:
② 起始角: ??
根軌跡如圖解4-4(b)所示。
??20,0? 180??45??90??135??0?
4-13 設(shè)單位反饋系統(tǒng)的開環(huán)傳遞函數(shù)為
K?(1?s)
G(s)?
s(s?2)
試繪制其根軌跡,并求出使系統(tǒng)產(chǎn)生重實根和純虛根的K值。
解 由開環(huán)傳遞函數(shù)的表達式知需繪制0根軌跡。
① 實軸上的根軌跡: ??2,0?,[1,??);
?
?
K?(1?s)
G(s)?
s(s?2)
111??② 分離點: dd?2d?1
解得:d1 = -0.732 , d2= 2.732
將s=d1= -0.732,s= d2= 2.732 代入幅值條件得
K
K?d1= 0.54 ,K
?
d2
=7.46
③ 與虛軸交點:閉環(huán)特征方程為
??2,0?,
[1,?
??
?K?2
?
dd
根軌跡如圖解4-13所示,復平面上的根軌跡為以開環(huán)零點為圓心,開環(huán)零點到分離點的距
?K離為半徑的圓。系統(tǒng)產(chǎn)生重實根的K為0.54,7.46,產(chǎn)生純虛根的K為2。d ?Kd
?
D(s)?s(s?2)?K?(1?s)?
4-14 設(shè)單位反饋系統(tǒng)的開環(huán)傳遞函數(shù)如下,試繪制參數(shù)b從零變到無窮時的根軌跡圖,并寫出b?2時系統(tǒng)的閉環(huán)傳遞函數(shù)。
(1)G(s)?20 (s?4)(s?b)
30(s?b) s(s?10)(2)G(s)?
解 (1)做等效開環(huán)傳遞函數(shù)
G(s)=?b(s?4) 2s?4s?20
① 實軸上的根軌跡:(??,?4]
② 分離點:111?? d?2?j4d?2?j4d?4
如圖解4-14(a)所示,根軌跡為以開環(huán)零點為圓心,開環(huán)零點到開環(huán)極點的距離為半徑的圓。 當b?2時,兩個閉環(huán)特征根為?1,2??3?j4.24。
此時閉環(huán)傳遞函數(shù)為
?(s)?20 (s?3?j4.24)(s?3?j4.24)
?(2)做等效開環(huán)傳遞函數(shù)G(s)=30b s(s?40)
① 實軸上的根軌跡:??40,?0?
② 分離點:
解得:d= -20
根軌跡如圖解4-14(b)所示,
當b?2時,兩個閉環(huán)特征根為?1??38.44,?2??1.56
此時閉環(huán)傳遞函數(shù)為 11??0 dd?40?(s)?
30(s?2) (s?1.56)(s?38.44)
5-5 繪制下列傳遞函數(shù)的漸近對數(shù)幅頻特性曲線。
1
,當輸入r(t)?sin2t時求系統(tǒng)的穩(wěn)態(tài)輸出. s?11
解 系統(tǒng)閉環(huán)傳遞函數(shù)為: ?(s)?
s?2
5-1單位反饋系統(tǒng)開環(huán)傳遞函數(shù)為:G(s)?頻率特性:
?(j?)?
12??
??j22
j??24??4??
14??
2
幅頻特性: ?(j?)?
相頻特性: ?(?)?arctan(當r(t)?sin2t時,??2,A=1 則?(j?)??2?
(2)G(s)?
??) 2
1?0.35,?(j2)?arctan(
?2
)??45? 2
10(s?1)
s2(0.02s?1)
(4)G(s)?42 ?(s?1)(s?2)(s?1)(s?1)2
(4)G(s)?1000
(s?1)(0.1s?1)(?1)2
300
第11 / 11頁
久久建筑網(wǎng)brightonrobinsfc.com提供大量:建筑圖紙、施工方案、工程書籍、建筑論文、合同表格、標準規(guī)范、CAD圖紙等內(nèi)容。