千萬(wàn)建筑資料下載 →
HindawiPublishingCorporationAdvancesinMechanicalEngineeringVolume2013,ArticleID154831,7pageshttp://dx.doi.org/10.1155/2013/154831
ResearchArticle
AMethodofRemainingCapacityEstimationforLithium-IonBattery
JunfuLi,LixinWang,ChaoLyu,WeilinLuo,KehuaMa,andLiqiangZhang
SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,ChinaCorrespondenceshouldbeaddressedtoLixinWang;wlx@hit.edu.cn
Received8September2013;Revised22October2013;Accepted22October2013AcademicEditor:XiaosongHu
Copyright?2013JunfuLietal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Combiningparticlefilter(PF)withsampleentropyfeatureofdischargevoltage,amethodofremainingcapacityestimationforlithium-ionbatteryisproposed.Thesampleentropycalculatedfromdischargevoltagecurvecanserveasanindicatorforassessingtheconditionofbattery.Underacertainworkingcondition,afunctionalrelationshipbetweensampleentropyanddischargecapacityiscreatedandestimationscomputedfromthefunctionaretakenasobservationstopropagateparticlesinPF.Theresultsindicatethatthealgorithmenhancestheaccuracy.Duetotheestablishmentoffunctionsatdifferentdischargeratesandtemperaturemodification,prognosticaccuracyofdischargecapacityhasbeenimprovedundermulti-operatingworkingconditions.
1.Introduction
Withtherapiddevelopmentofindustrialtechnology,theexplorationandutilizationofnewenergyhavebeeninurgentneed.Electricvehicleoccupiesapivotalpositioninnewenergyautomobile.Batterymanagementsystem(BMS)isspeciallydesignedtoimproveefficientutilization,topreventoverchargeoroverdischarge,toprolongtheservicelife,andtomonitorthestateofthebattery.Amoresophisticatedprognosticofbatteryhealthstateismuchneededforhighrequirementsofreliability,stability,andsecurityofbatteries.Consequently,thepredictionofremainingbatterylifeisconsideredasoneofthepromisingresearchfields.Numerouspapershavereportedthestudiesonstateofcharge(SOC)andstateofhealth(SOH)whicharethefocusofbatteryPrognosticandHealthManagement(PHM).
Batterydischargecapacityreachingitscriteriawithoutanyomenleadstoadisastrousfailureinsomecases.Theaccuratepredictionofremainingusefullife(RUL)ofbatteryisessentialforlong-timeefficientuse.ThecausesofcapacityfadingareinternalfactorssuchasanodicandcathodicactivematerialchangesandSEImembraneincrassation[1,2].AccuratebatterySOCestimationisofgreatsigni-ficancetobatteryelectricvehiclesandhybridelectricvehi-cles.SOCestimationaimsatthemanagementofenergyflowsofelectricvehiclesandavoidingbatteryoverchargeor
undercharge.Leeetal.[3]proposedanExtendedKalmanFilter(EKF)methodalongwithameasurementnoisemodelanddatarejectionoflithium-ionbatterySOCestimation.Theproposedalgorithmandmodelapproachwereverifiedthroughseveralexperiments.AnadaptiveunscentedKalmanfilteringmethodtoestimateSOCoflithium-ionbatterywaspresented[4].TheproposedSOCestimationmethodhadabetteraccuracycomparedwithpreviousworks.Leeetal.[5]estimatedtheSOCandthecapacityofalithium-ionbatterywithamodifiedOCV-SOCmodel.ThemethodovercamethevariationinconventionalOCV-SOC.
Methodsofbatterycapacityestimationareproposedbasedonthefollowingtwoideas.Onemethodisfeature-based.Inonesense,asvariationsofvoltage,current,andtem-peraturecharacteristiccurvescouldreflectthebatteryagingprocessesorinternalresistancevariations,somecharactersareoftenextractedfromthem.Salkindetal.[6]proposedapracticalmethodthatresistancesobtainedbyelectrochemicalimpedancespectroscopy(EIS)measurementandcoulombcountingtechniqueswereemployedinpredictingSOCandSOH.Theadvantageoftheworkwasthattherewasnoneedtoknowpreviousdischargeorcyclinghistory.Gomezetal.[7]madeadetailedanalysisonEISandpointedoutthataginginformationcouldbeextractedfromtheparametersofEISequivalentcircuitmodel.Pincus[8]firstlyintroducedtheconceptofapproximateentropymainlytocomputethe
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
2
complexityoftimeseries.Widodoetal.[9]tooksampleentropyfeaturesobtainedfromdischargevoltagecurvesasinputsofsupportvectormachine(SVM)andrelevancevectormachine(RVM)forSOHprediction.Theresultsshowedthatthemethodproposedwasplausible.
Theotherismodel-based.Generally,faultfeatureiscloselyrelatedtotheparametersofthemodel.Correctionandadjustmentofmodelparameterscanenhancethepre-dictionaccuracy.Themodel-basedtechniquescontributetoanin-depthunderstandingofthemechanismandhavetheadvantageofreal-timefaultprediction.Amodelofbatterysystemstateisestablishedtodescribethedischargebehaviororbatteryhealthstate.Abbasetal.[10]introducedanintegratedmethodologybasedonbothphysicsoffailuremodelsandBayesianestimationmethodsforprognosisofelectricalcomponents.Anempiricalformulawasproposedtodepictdischargingbehavioroflithium-ionbatteries[11–13].SimulationresultsindicatedthatPFalgorithmwasappropriateforthepredictionofbatteryhealthstate.Sahaetal.[14]presentedseveralalgorithmsincludingARIMA,RVM,EKF,andPF.ARVM-PFframeworkhadsignificantadvantagesovertheconventionalmethodsofRULestimationlikeARIMAandEKF.
Someresearchershavealsoestablishedelectrochemicalnumericalmodelandthermalmodelforthestudyonbatteryinternalcharacteristics.PorouselectrodemodelwithliquidelectrolytewasproposedbyWestetal.[15].Thatelectrolytedepletionwastheprimarylimitingfactorofcapacitywasdemonstrated.Parketal.[16]presentedanelectrochemicalheatconductionphenomenalmodel.Abetterunderstandingofconductionphenomenaoflithium-ionbatterieswaspre-sented.Kimetal.[17]extendedone-dimensionalmodelingapproachtothreedimensionstocapturegeometricalfeaturessuchasshapesanddimensionsofcellcomponents,tosimulateoventestsandtodeterminehowalocalhotspotcanpropagatethroughthecell.Thoughsomekeybehaviorsofbatterycellscanbecapturedinthesemodels,itiscomplextodeployalargenumberofunknownparametersduetothememoryandcomputation.Lumpedbatterymodelsarelikelytobethepreferredchoicewitharelativelyfewerparameters.Asystematiccomparativestudyoftwelvelumpedbatterymodelswasconducted[18].ThedevelopedcellvoltagemodelscouldbeusedinSOCestimationinBMS.
Thisworkisconductedbythecombinationofthetwoideasmentionedabove.Inthefollowingsection,wefirstlyintroducethetheoryaboutsampleentropyandbasicuti-lizationofparticlefilterintermsofprognosticsoflithium-ionbatteryRUL.Then,wepresentthedetailedpredictionprocedure.
AdvancesinMechanicalEngineering
sampleentropyisasfollows.Foragivenseries{????},weform?????+1vectorsas
??(??)=[??(??),??(??+1),...,??(??+???1)],
for??=1to?????+1.
(1)
Thedistancebetweenvectors??(??)and??(??)isdefinedas
??????,??[??(??),??(??)]=max??????????(??+??)???(??+??)??
for??,??=1to?????+1,
??=0to???1.
Foragiven??,calculatethenumberwhen??[??(??),??(??)]<
??,for??=??,anddefinethefunction
??????(??)=
1
num{??[??(??),??(??)]<??}.(3)(2)
Then,taketheaverageof??????(??).Theresultisexpressedas
?????+1
1
??(??)=∑??????(??).
??=1??
(4)
Similarly,replace??with??+1andrepeatthestepsfromthebeginning.Afterwards,wecandeterminethetwovalues????(??)and????+1(??).Asthesamplelengthisalwayslimited,thesampleentropyisestimatedby
????+1(??)
].SampEn(??,??,??)=?ln[(5)
ThevalueofSampEn(??,??,??)iscloselycorrelatedwith??,??,and??.Thus,theproperselectedparameterscouldresultinmorereasonablestatisticalproperties.
2.2.ParticleFilter.PFisaBayesianlearningtechniqueusingMonteCarlosimulations.Theideaistodescribethesystemstateasaprobabilitydensityfunction(PDF)approximatedbyparticlesthataregeneratedfromaprioridistributionandupdatedfromobservationsthroughameasurementmodel.Modelparametersareincludedasapartofthestatevectortobetracked[11].PFframeworkcanbeappliedtoRULpredictionofbatteryduetoitsgoodstatetrackingperformance.
Actualdischargecapacityisassociatedwithmanyfactors.Itisobviousthatchargingdirectlydeterminesthedischargecapacityinonecycle.Besides,reactionproductsforminguparoundtheelectrodeswilldecomposeduringrestorrelaxationperiod,whichleadtotheincreaseofavailablecapacityinnextcycle.Primarily,consideringthemaininflu-encefactorsofbatterycapacity,thefollowingstateequationsarecasttodescribethemodelasfollows:
????+1=??1????+??2exp(????(??+1)=????(??)+V??(??),
??3
),??
??=1,2,3,
(6)(7)
2.TheoryandIntelligentPrognosticMethod
2.1.SampleEntropy.SampleentropyisdefinedasgenerationrateofnewinformationbyRichmanandMoorman[19]forthecalculationofcomplexityoftimeseries.ItcanbeexpressedasSampEn(??,??,??),where??isagiventotalnumberofdata,??isthetoleranceforacceptingmatrices,and??isthedimensionofvectors.Thespecificalgorithmof
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
AdvancesinMechanicalEngineering
where??iscycleindex,????denotesthechargecapacity,Δ????istherelaxationperiodbetweenthetwoadjacentcycles,????+1isthedischargecapacity,??1,??2,and??3areparametersofthestateequation,andV1,V2,andV3areindependentzero-meanGaussiannoiseterms.
SahaandGoebel[11]establishedameasurementmodelandregardedchargingcapacityastheobservationtoprop-agateparticles.Areasonableobservationformeasuringtheweightsofparticlesandselectivelypropagatingthemplaysanimportantroleinpredictionaccuracy.Inthecaseofourapplication,viathefittingmethod,afunctionalrelationshipofsampleentropyanddischargecapacityisestablishedtoobtainanappropriateobservation.Particularly,sampleentropyiscalculatedfromthedischargevoltagecurveofthecyclenumber??.Thecorrespondingoutputofthefunctionisusedastheobservationincycle??+1.Itisworthmentioningthatthereisnoneedtotakeotherexperimentstoobtainsuchfeatures,forthedischargevoltagecurvescanbeeasilyobtainedduringthemonitoringineachcycle.
2.3.IntelligentPrognosticMethod.Theprocedurecomprisesthefollowing.
(1)Datacollectionisasfollows.
(a)Extractbatterydischargevoltagecurvesfromtrainingdataandtheselectedparameters??and??are2and0.1,respectively.Thefunctionalrelationshipofdischargecapacityandsampleentropyiscreatedunderthecurrentoperatingcondition.
(b)Gaindischargecurrentcurves,chargingcapac-ity,andrelaxationtimeofadjacentdischargecyclesfromvalidationtestdata.Inaddition,somehistoricalcapacitydataarealsoneeded.(2)Particlefilterinitializationisasfollows.
(a)Setthestartingpredictionpoint??inproportiontothenumberofhistoricalcapacitydata.
(b)Obtaininitialparameters????(??=1,2,3)viafitting.
(c)500initialparticlesaregeneratedwithvaluesobtainedin(2)-(b)andthevariancesofnoisetermV??(??=1,2,3)areabout10,000timessmallerthan??.(3)Predictionisasfollows.
????
(a)Particles{????}??=1areupdatedby(7)andtheprioridischargecapacityvaluesincycle??+1arecalculatedthroughthoseupdatedparticles??
}??{????+1??=1.
(b)Takesampleentropyfeatureastheinputofthefunctionandcomputetheweightofeachparti-cleperdeviationbetweenthecalculatedobser-vationandpreviousdischargevoltagevalue.
3
Normalizetheveryparticlesusingthefollowingformula:
??????+1
??(????+1)
=
??
????+1(????+1)
∑??=1
??????+1(????+1)
.(8)
(c)Throughthemethodofrandomsampling,each
??
particle{????+1}????=1iscopiedorabandonedselec-tivelyaccordingtoitsweightandthennew
??
}??sample{?????+1??=1isobtained.
??
(d)Theaverageofthesample{?????+1}????=1represents
theprobabilitydensitydistributionexpectationofeachparameterin(6).Then,thefinalestima-tion????+1canbeeasilyfiguredupby(6).
(e)Repeatthestepfrom(3)-(a)to(3)-(d)untilthecapacityreachesitscriterionwhichisa30%fadingofratedcapacity.
3.ExperimentData
Thefullsetofagingdatacollectedfromcommerciallyavailable18650-sizelithium-ioncellsprovidedbyNASAAmesPrognosticsCenterofExcellencewastakenasobjectofstudy.BatteryanodeandcathodematerialsaremostlyLiNi0.8Co0.15Al0.05O2andMAG-10graphite,respectively.Theelectrolyteis1.2MLiPF6inEC:EMC(3:7wt%)andtheseparatoris25??mthickPE.
Alltestingbatterieswererunthroughdifferentworkingprofiles(charge,discharge,andimpedance).BatteriesNo.6andNo.18weretestedbythefollowingsteps:(1)chargingwascarriedoutinaconstantcurrentmodeat1.5Auntilthebatteryvoltagereached4.2V,(2)aconstantvoltagemodewastheninoperationuntilthechargecurrentdroppedto20mA,(3)batterieswereputasideforaperiodoftime,(4)impedancemeasurementwasimplementedwithanelectrochemicalimpedancespectroscopyfrequencysweepfrom0.1Hzto5kHz,(5)at24°C,dischargingwascarriedoutataconstantcurrentlevelof2Auntilthebatteryvoltagefellto2.5V,(6)thesamestepas(3),and(7)thesamestepas(4).Repeatedcharginganddischargingresultedinanacceleratedagingprocess.Theexperimentswerestoppedwhenthebatteriesreachedtheend-of-lifecriteriawhichwasa30%fadinginratedcapacity(from2Ahrto1.4Ahr).
4.ResultsandDiscussion
4.1.SingleWorkingCondition.Figure1depictsthedischargevoltagecurvesindifferentcycles.Ataconstantcurrentof2A,thevoltagedropsfrom4.2Vto2.6V.Obviously,thecurvesvaryfromcycletocycleintheagingprocesses.ItcanbeseenfromFigure1thatthelowestvoltagepointbouncesbackinstantlyattheendofdischargeandsubsequentlyrisesslowlyuntilitcomestoastop.Thetwoarrowspointouttheprocessesmentionedabove.Observingthedefinitionofsampleentropy,wecanfindthatwhenthemaximumdistancecomputedfromtheadjacentvectorsconstitutedbythesequentialsamplesisgreaterthan??,thecomplexitynumberofthecorrespondingvectorin(3)willnotchange
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
4
4.2
Voltage (V)
AdvancesinMechanical
Engineering
instatisticalcalculations.Otherwise,ifthenoisesignalisaddedtothesampleswithlargeramplitude,itwillbeignoredbydetection,forthedistancebetweenthedisturbedvectorsislongerthanothers.Inthatsense,sampleentropycouldcapturethefeaturesofvoltagevarianceinaconstantcurrentmode.
Asbatteryisaginggraduallyduringtheusageperiod,wefindaninterestingconnectionbetweenthesampleentropyfeatureandthedischargecapacity.Inconsequence,sampleentropycouldserveasanindicatorforassessingtheconditionofbattery.WithtrainingdataofbatteryNo.18,acubicpolynomialfittingisintroducedtofindoutthefunctionalrelationshipbetweenthem.Whentheparameter??and??aredeployedto2and0.1,respectively,abetterfittingeffectisobtainedwithareasonablestatisticalresult.
Thestartingpoint??andpredictinglengthare25and115.Figures2and3showthepredictionresultofbatteryNo.6anditserrors.Fromtheactualdischargecapacitycurve,itisevidentthatbatteryNo.6hasfadedtoitslimit1.405Ahrwhenitcyclesatcyclenumber108.ObservingFigure3,apartfromseveralpoints,mostrelativeerrorsarewithin5%.Theearlypredictionhashigherprecisionanderrorsofsomereboundpointsarelessthan2%.
ToillustratethesuperiorityofthisworkcomparedwithSahaandGoebel[11],Figure4showsthecomparativepre-dictionresult.
AsisshowedinFigure4,somekeypointsofpredictionarepointedoutbysevenarrowsonthegraphandthecontrastivepredictionapparentlyengendersagreatererror.Predictionaccuracyismeasuredbytheroot-mean-squared(RMS)errorandpeakerror.ThestatisticalfiguresrevealthatRMSerrorsofbothpredictionsare8.64%and4.30%,respectively,andthepeakerrorsare37.86%and8.28%.
Thedischargecapacityisnotonlydirectlyrelatedtochargecapacityandresttimeofadjacentcyclesbutisalsoaffectedbyactualworkingconditions.Whentheforecastingandtrainingconditions,suchthatambienttemperatureanddischargerateareinconsistent,itcanbeeasilyexpectedthattheestimationpointswilldeviatefromtheactualonesineachcycle.
4.2.MultioperatingWorkingCondition.Withoutknowingofagingmechanism,itishardtomakeaspecificillustrationthathowtheagingprocessinsidethebatteryisinfluencedbyenvironmentalfactors.But,itiscertainthatasbatteryagingprocesses,differentoperationalconditionsaccountsforthedischargecapacityfadingbehaviors.Itisrequiredtoupdateorrevisetheaforementionedfunctionproperlytosatisfytherequirementofhighaccuracywhenfacingamultioperatingworkingcondition.ThedatasetsprovidedbyNASAonlyincludeseveraldischargerates.Thus,thepaperbuildsthreefunctionstakingdifferent??-ratesundereachambienttemperatureintoaccountsummarizedinTable1,where??issampleentropyand??istheestimationcapacityusedasobservationinalgorithmPFinourmethod.
Supposethattheoperatingambienttemperatureis24°C.Itisinterestingtofindthattherelativemeandeviationsbetweenestimationvaluesanddischargecapacitiesatactual
3.83.432.6Time
First cycleSecond cycleThird cycleFourth cycle
Figure1:Batteryvoltagecurvesindifferentcyclesandthetwovoltagevariationprocesseswerepointedoutbythe
arrows.
2.1
Capacity (Ahr)
1.91.71.51.3Cycle (—)
Actual discharge capacity
Estimated value with observationobtained from sample entropy
Figure2:PredictionofbatteryNo.6.
0.08
Error (%)
0.060.040.02020
40
60
80Cycle (—)
100
120
140
Figure3:Relative
errors.
2.1
Capacity (Ahr)
1.91.71.51.3
1.1
Cycle (—)
Actual discharge capacity
Estimated value with observationobtained from sample entropyEstimated value with observationobtained from charging capacity
Figure4:Comparativesimulationresultsthroughdifferentmeth-ods.
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
AdvancesinMechanicalEngineering
Table1:Capacityestimationfunctionsunderdifferentoptionalconditions.
Dischargerate0.5C1C2C
0.20.10?0.1?0.2?0.3?0.4?0.5
5
Ambienttemperature
4C24°C24°CCapacityestimationfunction
??=(9.6169???0.4326??+0.0035??+0.0001)×10??=(?1.1240??3+0.0154??2?0.0166??+0.0018)×103??=(?7.2590??3+0.3225??2?0.0044??+0.00003)×105
Table2:RMSerrorsandpeakerrorsofbatteryNo.55.Startingpoint??10152025
RMSerror(%)
3.262.642.302.24
Peakerror(%)
13.227.076.755.63
Offset (Ahr)
0510
15202530Temperature (deg)
354045
Figure5:Offsetsatdifferenttemperature.
1.41.31.21.110.90.80.7
Table3:RMSerrorsandpeakerrorsofbatteryNo.31.Startingpoint??101215
RMSerror(%)
2.171.641.37
Peakerror(%)
5.274.223.12
Capacity (Ahr)
0102030
4050Cycle (—)
607080
ActualEstimated
Figure6:PredictionofbatteryNo.55.
1.821.781.741.71.66
5
10
15
2025Cycle (—)
30
35
40
ActualEstimated
Figure7:PredictionofbatteryNo.31.
1.61.2
0.8
0.400
5
10
15
2025Cycle (—)
303540
ActualEstimated
Figure8:PredictionofbatteryNo.39.
temperature4°Cand43°Carearound?0.38and0.02.Asamatteroffact,higherorlowertemperatureaffectstheactualdischargecapacity.Onaccountofthehigherambi-enttemperature,theinternalsubstancesaremoreactiveresultinginalargerdischargecapacity.Onthecontrary,thelowertemperaturesslowdownthephysicochemicalreactionsinsidethebatteryleadingtothefactthattheactualcapacitycannotreachthemaximum.Inaconstantdischargecurrentmode,itisreasonableandessentialtomodifythecapacityobservationsinPFalgorithm.Thus,accordingtothepreviouscalculations,afunctionalrelationshipbetweenambienttemperaturesandestimationoffsetsisestablishedthroughquadraticcurvefitting.ThefittingresultisgiveninFigure5.
Theselectedoffsetbenchmarkiszeroat24°C.Figures6and7showthepredictionresultsofbatteryNo.55(4°C,1??)andNo.31(43°C,2??).Bothtwooffsetsareseparately?0.38and0.02.Asisexpected,thepredictioncurvesarebasicallyconsistentwiththeactualones.
Tables2and3showtheRMSerrorsandpeakerrorsatdifferentpredictionstartingpoints.Theresultsindicatethatasthenumberofhistoricalcapacitydataisincreasing,errorshavethedownwardtrends.
BatteryNo.39istestedunderamultioperatingworkingcondition.Thefirstseveraldischargecyclesaretestedat24°C,2??andtheothersat44°C,0.5??.Thecorrespondingcapacityestimationfunctionshouldbeselectedinaccordancewiththeoperatingcondition.Asoneoftherelevantfunctionsisbuiltat4°C,0.5??,theactualoffsetat44°Cshouldbeincreasedto0.398ratherthan0.018inFigure5.ThepredictionresultofbatteryNo.39ispresentedinFigure8andtheRMSerroris5.78%.
Figure9showsthecontrastivepredictionresult.Withouttheconsiderationof??-rateandambienttemperature,theestimationperformsmuchworsewith27.56%RMSerror.
Capacity (Ahr)
Capacity (Ahr)
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
A Method of Remaining Capacity Estimation for LithiumIon Battery鋰離子電池剩余壽命估計(jì)方法.doc下載6
1.61.2
0.8
AdvancesinMechanicalEngineering
Capacity (Ahr)
Acknowledgments
ThisresearchisfinanciallysupportedbytheNationalNat-uralScienceFoundationofChina(no.51107021)andtheFundamentalResearchFundsfortheCentralUniversities(Grantno.HIT.NSRIF.2014021).WesincerelyappreciatethesignificanthelpontranslationbyMiss.HanWang.
0.400
5
10
15
2025Cycle (—)
303540
ActualEstimated
References
[1]Q.ZhangandR.E.White,“Capacityfadeanalysisofalithiumioncell,”JournalofPowerSources,vol.179,no.2,pp.793–798,2008.
[2]M.DubarryandB.Y.Liaw,“Identifycapacityfadingmechanism
inacommercialLiFePO4cell,”JournalofPowerSources,vol.194,no.1,pp.541–549,2009.
[3]J.Lee,O.Nam,andB.H.Cho,“Li-ionbatterySOCestimation
methodbasedonthereducedorderextendedKalmanfiltering,”JournalofPowerSources,vol.174,no.1,pp.9–15,2007.
[4]F.Sun,X.Hu,Y.Zou,andS.Li,“AdaptiveunscentedKalman
filteringforstateofchargeestimationofalithium-ionbatteryforelectricvehicles,”Energy,vol.36,no.5,pp.3531–3540,2011.[5]S.Lee,J.Kim,J.Lee,andB.H.Cho,“State-of-chargeandcap-acityestimationoflithium-ionbatteryusinganewopen-circuitvoltageversusstate-of-charge,”JournalofPowerSources,vol.185,no.2,pp.1367–1373,2008.
[6]A.J.Salkind,C.Fennie,P.Singh,T.Atwater,andD.E.Reisner,
“Determinationofstate-of-chargeandstate-of-healthofbatter-iesbyfuzzylogicmethodology,”JournalofPowerSources,vol.80,no.1,pp.293–300,1999.
[7]J.Gomez,R.Nelson,E.E.Kalu,M.H.Weatherspoon,andJ.P.
Zheng,“Equivalentcircuitmodelparametersofahigh-powerLi-ionbattery:thermalandstateofchargeeffects,”JournalofPowerSources,vol.196,no.10,pp.4826–4831,2011.
[8]S.M.Pincus,“Approximateentropyasameasureofsystem
complexity,”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,vol.88,no.6,pp.2297–2301,1991.[9]A.Widodo,M.-C.Shim,W.Caesarendra,andB.-S.Yang,“Int-elligentprognosticsforbatteryhealthmonitoringbasedonsampleentropy,”ExpertSystemswithApplications,vol.38,no.9,pp.11763–11769,2011.
[10]M.Abbas,A.A.Ferri,M.E.Orchard,andG.J.Vachtsevanos,
“Anintelligentdiagnostic/prognosticframeworkforautomo-tiveelectricalsystems,”inProceedingsoftheIEEEIntelligentVehiclesSymposium(IV’07),pp.352–357,Istanbul,Turkey,June2007.
[11]B.SahaandK.Goebel,“ModelingLi-ionbatterycapacitydep-letioninaparticlefilteringframework,”inProceedingsoftheAnnualConferenceofthePrognosticsandHealthManagementSociety,2009.
[12]K.Goebel,B.Saha,A.Saxena,J.R.Celaya,andJ.P.Christopher-sen,“Prognosticsinbatteryhealthmanagement,”IEEEInstru-mentationandMeasurementMagazine,vol.11,no.4,pp.33–40,2008.
[13]S.Saha,B.Saha,andK.Goebel,“Distributedprognostichealth
managementwithGaussianprocessregression,”inProceedingsoftheConferenceoftheSocietyforMachineryFailurePreventionTechnology(MFPT’09),April2009.
[14]B.Saha,K.Goebel,andJ.Christophersen,“Comparisonofpro-gnosticalgorithmsforestimatingremainingusefullifeofbat-teries,”TransactionsoftheInstituteofMeasurementandControl,vol.31,no.3-4,pp.293–308,2009.
Figure9:Comparativeprediction.
Alargeamountofdischargedatasetswillberequiredmainlyforestablishmentofasetofcapacityestimationfunctions.Thechoiceofaproperfunctioninaccordancewiththeworkingconditionisnecessaryfortheimplementofalgorithm.Otherwise,ittakesaboutaperiodof200msproportionaltothenumberofestimationpointstocompletepredictionforeachcycle.
5.Conclusions
Thispaperfocusesondevelopinganintelligentpredictionmethodofbatterycapacitythroughparticlefilterandsampleentropy.Underacertainoptionalcondition,afunctionalrelationshipofsampleentropyanddischargecapacityiscre-ated.TheestimationscomputedfromthefunctionaretakenasobservationstopropagateparticlesinPF.Whenfacingamultioperatingworkingcondition,thispaperbuildsthreefunctionsconsideringdifferent??-ratesunderdifferentambi-enttemperatures.Itisakeypointtoselectacorrespondingcapacityestimationfunctionandtomodifytheobservationbytemperature.Onaccountofgoodtrackingcapabilities,PFalgorithmisappliedtodeterminetheunknownparametersandfulfillthepredictionwithbetterstatisticalcalculations.Thepredictionresultcanreflectthecapacityfadingbehaviorsandhasahigheraccuracywithnotmorethan5%RMSerrorofbatteryNo.6.Comparedwithothermethods,prognosticaccuracyhasbeengreatlyimprovedunderalargerangeofcyclingconditionswithlessthan6%RMSerror.
Inaddition,thoughthepredictionresultshavebeensatisfactory,therestillleavesconsiderableroomforimprove-ments.Ourmethodisnotfitforpracticalapplicationnow,fortheambienttemperatureand??-ratesareconstantsinonecycleinourwork.Whenfacingadynamiccycle,suchasacomplexcurrent,itsimpactoncapacitycouldbeequivalentlyseenasaconstantone,whichseemstobeaconsiderablesolution.Withanimprovingunderstandingoftheseimpactsonbatterycapacity,theprognosticperformancecanbefurtherrefined.
ConflictofInterests
Theauthorsdeclarethatthereisnoconflictofinterestsregardingthepublicationofthispaper.
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
AdvancesinMechanicalEngineering
[15]K.West,T.Jacobsen,andS.Atlung,“Modelingofporousinser-
tionelectrodeswithliquidelectrolyte,”JournaloftheElectro-chemicalSociety,vol.129,no.7,pp.1480–1485,1982.
[16]M.Park,X.Zhang,M.Chung,G.B.Less,andA.M.Sastry,“A
reviewofconductionphenomenainLi-ionbatteries,”JournalofPowerSources,vol.195,no.24,pp.7904–7929,2010.
[17]G.H.Kim,A.Pesaran,andR.Spotnitz,“Athree-dimensional
thermalabusemodelforlithium-ioncells,”JournalofPowerSources,vol.170,no.2,pp.476–489,2007.
[18]X.Hu,S.Li,andH.Peng,“Acomparativestudyofequivalent
circuitmodelsforLi-ionbatteries,”JournalofPowerSources,vol.198,pp.359–367,2012.
[19]J.S.RichmanandJ.R.Moorman,“Physiologicaltime-series
analysisusingapproximateandsampleentropy,”AmericanJour-nalofPhysiology:HeartandCirculatoryPhysiology,vol.278,no.6,pp.H2039–H2049,2000.7
Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016
久久建筑網(wǎng)brightonrobinsfc.com提供大量:建筑圖紙、施工方案、工程書(shū)籍、建筑論文、合同表格、標(biāo)準(zhǔn)規(guī)范、CAD圖紙等內(nèi)容。