A Method of Remaining Capacity Estimation for LithiumIon Battery鋰離子電池剩余壽

 

HindawiPublishingCorporationAdvancesinMechanicalEngineeringVolume2013,ArticleID154831,7pageshttp://dx.doi.org/10.1155/2013/154831

ResearchArticle

AMethodofRemainingCapacityEstimationforLithium-IonBattery

JunfuLi,LixinWang,ChaoLyu,WeilinLuo,KehuaMa,andLiqiangZhang

SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,ChinaCorrespondenceshouldbeaddressedtoLixinWang;wlx@hit.edu.cn

Received8September2013;Revised22October2013;Accepted22October2013AcademicEditor:XiaosongHu

Copyright?2013JunfuLietal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.

Combiningparticlefilter(PF)withsampleentropyfeatureofdischargevoltage,amethodofremainingcapacityestimationforlithium-ionbatteryisproposed.Thesampleentropycalculatedfromdischargevoltagecurvecanserveasanindicatorforassessingtheconditionofbattery.Underacertainworkingcondition,afunctionalrelationshipbetweensampleentropyanddischargecapacityiscreatedandestimationscomputedfromthefunctionaretakenasobservationstopropagateparticlesinPF.Theresultsindicatethatthealgorithmenhancestheaccuracy.Duetotheestablishmentoffunctionsatdifferentdischargeratesandtemperaturemodification,prognosticaccuracyofdischargecapacityhasbeenimprovedundermulti-operatingworkingconditions.

1.Introduction

Withtherapiddevelopmentofindustrialtechnology,theexplorationandutilizationofnewenergyhavebeeninurgentneed.Electricvehicleoccupiesapivotalpositioninnewenergyautomobile.Batterymanagementsystem(BMS)isspeciallydesignedtoimproveefficientutilization,topreventoverchargeoroverdischarge,toprolongtheservicelife,andtomonitorthestateofthebattery.Amoresophisticatedprognosticofbatteryhealthstateismuchneededforhighrequirementsofreliability,stability,andsecurityofbatteries.Consequently,thepredictionofremainingbatterylifeisconsideredasoneofthepromisingresearchfields.Numerouspapershavereportedthestudiesonstateofcharge(SOC)andstateofhealth(SOH)whicharethefocusofbatteryPrognosticandHealthManagement(PHM).

Batterydischargecapacityreachingitscriteriawithoutanyomenleadstoadisastrousfailureinsomecases.Theaccuratepredictionofremainingusefullife(RUL)ofbatteryisessentialforlong-timeefficientuse.ThecausesofcapacityfadingareinternalfactorssuchasanodicandcathodicactivematerialchangesandSEImembraneincrassation[1,2].AccuratebatterySOCestimationisofgreatsigni-ficancetobatteryelectricvehiclesandhybridelectricvehi-cles.SOCestimationaimsatthemanagementofenergyflowsofelectricvehiclesandavoidingbatteryoverchargeor

undercharge.Leeetal.[3]proposedanExtendedKalmanFilter(EKF)methodalongwithameasurementnoisemodelanddatarejectionoflithium-ionbatterySOCestimation.Theproposedalgorithmandmodelapproachwereverifiedthroughseveralexperiments.AnadaptiveunscentedKalmanfilteringmethodtoestimateSOCoflithium-ionbatterywaspresented[4].TheproposedSOCestimationmethodhadabetteraccuracycomparedwithpreviousworks.Leeetal.[5]estimatedtheSOCandthecapacityofalithium-ionbatterywithamodifiedOCV-SOCmodel.ThemethodovercamethevariationinconventionalOCV-SOC.

Methodsofbatterycapacityestimationareproposedbasedonthefollowingtwoideas.Onemethodisfeature-based.Inonesense,asvariationsofvoltage,current,andtem-peraturecharacteristiccurvescouldreflectthebatteryagingprocessesorinternalresistancevariations,somecharactersareoftenextractedfromthem.Salkindetal.[6]proposedapracticalmethodthatresistancesobtainedbyelectrochemicalimpedancespectroscopy(EIS)measurementandcoulombcountingtechniqueswereemployedinpredictingSOCandSOH.Theadvantageoftheworkwasthattherewasnoneedtoknowpreviousdischargeorcyclinghistory.Gomezetal.[7]madeadetailedanalysisonEISandpointedoutthataginginformationcouldbeextractedfromtheparametersofEISequivalentcircuitmodel.Pincus[8]firstlyintroducedtheconceptofapproximateentropymainlytocomputethe

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

2

complexityoftimeseries.Widodoetal.[9]tooksampleentropyfeaturesobtainedfromdischargevoltagecurvesasinputsofsupportvectormachine(SVM)andrelevancevectormachine(RVM)forSOHprediction.Theresultsshowedthatthemethodproposedwasplausible.

Theotherismodel-based.Generally,faultfeatureiscloselyrelatedtotheparametersofthemodel.Correctionandadjustmentofmodelparameterscanenhancethepre-dictionaccuracy.Themodel-basedtechniquescontributetoanin-depthunderstandingofthemechanismandhavetheadvantageofreal-timefaultprediction.Amodelofbatterysystemstateisestablishedtodescribethedischargebehaviororbatteryhealthstate.Abbasetal.[10]introducedanintegratedmethodologybasedonbothphysicsoffailuremodelsandBayesianestimationmethodsforprognosisofelectricalcomponents.Anempiricalformulawasproposedtodepictdischargingbehavioroflithium-ionbatteries[11–13].SimulationresultsindicatedthatPFalgorithmwasappropriateforthepredictionofbatteryhealthstate.Sahaetal.[14]presentedseveralalgorithmsincludingARIMA,RVM,EKF,andPF.ARVM-PFframeworkhadsignificantadvantagesovertheconventionalmethodsofRULestimationlikeARIMAandEKF.

Someresearchershavealsoestablishedelectrochemicalnumericalmodelandthermalmodelforthestudyonbatteryinternalcharacteristics.PorouselectrodemodelwithliquidelectrolytewasproposedbyWestetal.[15].Thatelectrolytedepletionwastheprimarylimitingfactorofcapacitywasdemonstrated.Parketal.[16]presentedanelectrochemicalheatconductionphenomenalmodel.Abetterunderstandingofconductionphenomenaoflithium-ionbatterieswaspre-sented.Kimetal.[17]extendedone-dimensionalmodelingapproachtothreedimensionstocapturegeometricalfeaturessuchasshapesanddimensionsofcellcomponents,tosimulateoventestsandtodeterminehowalocalhotspotcanpropagatethroughthecell.Thoughsomekeybehaviorsofbatterycellscanbecapturedinthesemodels,itiscomplextodeployalargenumberofunknownparametersduetothememoryandcomputation.Lumpedbatterymodelsarelikelytobethepreferredchoicewitharelativelyfewerparameters.Asystematiccomparativestudyoftwelvelumpedbatterymodelswasconducted[18].ThedevelopedcellvoltagemodelscouldbeusedinSOCestimationinBMS.

Thisworkisconductedbythecombinationofthetwoideasmentionedabove.Inthefollowingsection,wefirstlyintroducethetheoryaboutsampleentropyandbasicuti-lizationofparticlefilterintermsofprognosticsoflithium-ionbatteryRUL.Then,wepresentthedetailedpredictionprocedure.

AdvancesinMechanicalEngineering

sampleentropyisasfollows.Foragivenseries{????},weform?????+1vectorsas

??(??)=[??(??),??(??+1),...,??(??+???1)],

for??=1to?????+1.

(1)

Thedistancebetweenvectors??(??)and??(??)isdefinedas

??????,??[??(??),??(??)]=max??????????(??+??)???(??+??)??

for??,??=1to?????+1,

??=0to???1.

Foragiven??,calculatethenumberwhen??[??(??),??(??)]<

??,for??=??,anddefinethefunction

??????(??)=

1

num{??[??(??),??(??)]<??}.(3)(2)

Then,taketheaverageof??????(??).Theresultisexpressedas

?????+1

1

??(??)=∑??????(??).

??=1??

(4)

Similarly,replace??with??+1andrepeatthestepsfromthebeginning.Afterwards,wecandeterminethetwovalues????(??)and????+1(??).Asthesamplelengthisalwayslimited,thesampleentropyisestimatedby

????+1(??)

].SampEn(??,??,??)=?ln[(5)

ThevalueofSampEn(??,??,??)iscloselycorrelatedwith??,??,and??.Thus,theproperselectedparameterscouldresultinmorereasonablestatisticalproperties.

2.2.ParticleFilter.PFisaBayesianlearningtechniqueusingMonteCarlosimulations.Theideaistodescribethesystemstateasaprobabilitydensityfunction(PDF)approximatedbyparticlesthataregeneratedfromaprioridistributionandupdatedfromobservationsthroughameasurementmodel.Modelparametersareincludedasapartofthestatevectortobetracked[11].PFframeworkcanbeappliedtoRULpredictionofbatteryduetoitsgoodstatetrackingperformance.

Actualdischargecapacityisassociatedwithmanyfactors.Itisobviousthatchargingdirectlydeterminesthedischargecapacityinonecycle.Besides,reactionproductsforminguparoundtheelectrodeswilldecomposeduringrestorrelaxationperiod,whichleadtotheincreaseofavailablecapacityinnextcycle.Primarily,consideringthemaininflu-encefactorsofbatterycapacity,thefollowingstateequationsarecasttodescribethemodelasfollows:

????+1=??1????+??2exp(????(??+1)=????(??)+V??(??),

??3

),??

??=1,2,3,

(6)(7)

2.TheoryandIntelligentPrognosticMethod

2.1.SampleEntropy.SampleentropyisdefinedasgenerationrateofnewinformationbyRichmanandMoorman[19]forthecalculationofcomplexityoftimeseries.ItcanbeexpressedasSampEn(??,??,??),where??isagiventotalnumberofdata,??isthetoleranceforacceptingmatrices,and??isthedimensionofvectors.Thespecificalgorithmof

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

AdvancesinMechanicalEngineering

where??iscycleindex,????denotesthechargecapacity,Δ????istherelaxationperiodbetweenthetwoadjacentcycles,????+1isthedischargecapacity,??1,??2,and??3areparametersofthestateequation,andV1,V2,andV3areindependentzero-meanGaussiannoiseterms.

SahaandGoebel[11]establishedameasurementmodelandregardedchargingcapacityastheobservationtoprop-agateparticles.Areasonableobservationformeasuringtheweightsofparticlesandselectivelypropagatingthemplaysanimportantroleinpredictionaccuracy.Inthecaseofourapplication,viathefittingmethod,afunctionalrelationshipofsampleentropyanddischargecapacityisestablishedtoobtainanappropriateobservation.Particularly,sampleentropyiscalculatedfromthedischargevoltagecurveofthecyclenumber??.Thecorrespondingoutputofthefunctionisusedastheobservationincycle??+1.Itisworthmentioningthatthereisnoneedtotakeotherexperimentstoobtainsuchfeatures,forthedischargevoltagecurvescanbeeasilyobtainedduringthemonitoringineachcycle.

2.3.IntelligentPrognosticMethod.Theprocedurecomprisesthefollowing.

(1)Datacollectionisasfollows.

(a)Extractbatterydischargevoltagecurvesfromtrainingdataandtheselectedparameters??and??are2and0.1,respectively.Thefunctionalrelationshipofdischargecapacityandsampleentropyiscreatedunderthecurrentoperatingcondition.

(b)Gaindischargecurrentcurves,chargingcapac-ity,andrelaxationtimeofadjacentdischargecyclesfromvalidationtestdata.Inaddition,somehistoricalcapacitydataarealsoneeded.(2)Particlefilterinitializationisasfollows.

(a)Setthestartingpredictionpoint??inproportiontothenumberofhistoricalcapacitydata.

(b)Obtaininitialparameters????(??=1,2,3)viafitting.

(c)500initialparticlesaregeneratedwithvaluesobtainedin(2)-(b)andthevariancesofnoisetermV??(??=1,2,3)areabout10,000timessmallerthan??.(3)Predictionisasfollows.

????

(a)Particles{????}??=1areupdatedby(7)andtheprioridischargecapacityvaluesincycle??+1arecalculatedthroughthoseupdatedparticles??

}??{????+1??=1.

(b)Takesampleentropyfeatureastheinputofthefunctionandcomputetheweightofeachparti-cleperdeviationbetweenthecalculatedobser-vationandpreviousdischargevoltagevalue.

3

Normalizetheveryparticlesusingthefollowingformula:

??????+1

??(????+1)

=

??

????+1(????+1)

∑??=1

??????+1(????+1)

.(8)

(c)Throughthemethodofrandomsampling,each

??

particle{????+1}????=1iscopiedorabandonedselec-tivelyaccordingtoitsweightandthennew

??

}??sample{?????+1??=1isobtained.

??

(d)Theaverageofthesample{?????+1}????=1represents

theprobabilitydensitydistributionexpectationofeachparameterin(6).Then,thefinalestima-tion????+1canbeeasilyfiguredupby(6).

(e)Repeatthestepfrom(3)-(a)to(3)-(d)untilthecapacityreachesitscriterionwhichisa30%fadingofratedcapacity.

3.ExperimentData

Thefullsetofagingdatacollectedfromcommerciallyavailable18650-sizelithium-ioncellsprovidedbyNASAAmesPrognosticsCenterofExcellencewastakenasobjectofstudy.BatteryanodeandcathodematerialsaremostlyLiNi0.8Co0.15Al0.05O2andMAG-10graphite,respectively.Theelectrolyteis1.2MLiPF6inEC:EMC(3:7wt%)andtheseparatoris25??mthickPE.

Alltestingbatterieswererunthroughdifferentworkingprofiles(charge,discharge,andimpedance).BatteriesNo.6andNo.18weretestedbythefollowingsteps:(1)chargingwascarriedoutinaconstantcurrentmodeat1.5Auntilthebatteryvoltagereached4.2V,(2)aconstantvoltagemodewastheninoperationuntilthechargecurrentdroppedto20mA,(3)batterieswereputasideforaperiodoftime,(4)impedancemeasurementwasimplementedwithanelectrochemicalimpedancespectroscopyfrequencysweepfrom0.1Hzto5kHz,(5)at24°C,dischargingwascarriedoutataconstantcurrentlevelof2Auntilthebatteryvoltagefellto2.5V,(6)thesamestepas(3),and(7)thesamestepas(4).Repeatedcharginganddischargingresultedinanacceleratedagingprocess.Theexperimentswerestoppedwhenthebatteriesreachedtheend-of-lifecriteriawhichwasa30%fadinginratedcapacity(from2Ahrto1.4Ahr).

4.ResultsandDiscussion

4.1.SingleWorkingCondition.Figure1depictsthedischargevoltagecurvesindifferentcycles.Ataconstantcurrentof2A,thevoltagedropsfrom4.2Vto2.6V.Obviously,thecurvesvaryfromcycletocycleintheagingprocesses.ItcanbeseenfromFigure1thatthelowestvoltagepointbouncesbackinstantlyattheendofdischargeandsubsequentlyrisesslowlyuntilitcomestoastop.Thetwoarrowspointouttheprocessesmentionedabove.Observingthedefinitionofsampleentropy,wecanfindthatwhenthemaximumdistancecomputedfromtheadjacentvectorsconstitutedbythesequentialsamplesisgreaterthan??,thecomplexitynumberofthecorrespondingvectorin(3)willnotchange

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

4

4.2

Voltage (V)

AdvancesinMechanical

A Method of Remaining Capacity Estimation for LithiumIon Battery鋰離子電池剩余壽

Engineering

instatisticalcalculations.Otherwise,ifthenoisesignalisaddedtothesampleswithlargeramplitude,itwillbeignoredbydetection,forthedistancebetweenthedisturbedvectorsislongerthanothers.Inthatsense,sampleentropycouldcapturethefeaturesofvoltagevarianceinaconstantcurrentmode.

Asbatteryisaginggraduallyduringtheusageperiod,wefindaninterestingconnectionbetweenthesampleentropyfeatureandthedischargecapacity.Inconsequence,sampleentropycouldserveasanindicatorforassessingtheconditionofbattery.WithtrainingdataofbatteryNo.18,acubicpolynomialfittingisintroducedtofindoutthefunctionalrelationshipbetweenthem.Whentheparameter??and??aredeployedto2and0.1,respectively,abetterfittingeffectisobtainedwithareasonablestatisticalresult.

Thestartingpoint??andpredictinglengthare25and115.Figures2and3showthepredictionresultofbatteryNo.6anditserrors.Fromtheactualdischargecapacitycurve,itisevidentthatbatteryNo.6hasfadedtoitslimit1.405Ahrwhenitcyclesatcyclenumber108.ObservingFigure3,apartfromseveralpoints,mostrelativeerrorsarewithin5%.Theearlypredictionhashigherprecisionanderrorsofsomereboundpointsarelessthan2%.

ToillustratethesuperiorityofthisworkcomparedwithSahaandGoebel[11],Figure4showsthecomparativepre-dictionresult.

AsisshowedinFigure4,somekeypointsofpredictionarepointedoutbysevenarrowsonthegraphandthecontrastivepredictionapparentlyengendersagreatererror.Predictionaccuracyismeasuredbytheroot-mean-squared(RMS)errorandpeakerror.ThestatisticalfiguresrevealthatRMSerrorsofbothpredictionsare8.64%and4.30%,respectively,andthepeakerrorsare37.86%and8.28%.

Thedischargecapacityisnotonlydirectlyrelatedtochargecapacityandresttimeofadjacentcyclesbutisalsoaffectedbyactualworkingconditions.Whentheforecastingandtrainingconditions,suchthatambienttemperatureanddischargerateareinconsistent,itcanbeeasilyexpectedthattheestimationpointswilldeviatefromtheactualonesineachcycle.

4.2.MultioperatingWorkingCondition.Withoutknowingofagingmechanism,itishardtomakeaspecificillustrationthathowtheagingprocessinsidethebatteryisinfluencedbyenvironmentalfactors.But,itiscertainthatasbatteryagingprocesses,differentoperationalconditionsaccountsforthedischargecapacityfadingbehaviors.Itisrequiredtoupdateorrevisetheaforementionedfunctionproperlytosatisfytherequirementofhighaccuracywhenfacingamultioperatingworkingcondition.ThedatasetsprovidedbyNASAonlyincludeseveraldischargerates.Thus,thepaperbuildsthreefunctionstakingdifferent??-ratesundereachambienttemperatureintoaccountsummarizedinTable1,where??issampleentropyand??istheestimationcapacityusedasobservationinalgorithmPFinourmethod.

Supposethattheoperatingambienttemperatureis24°C.Itisinterestingtofindthattherelativemeandeviationsbetweenestimationvaluesanddischargecapacitiesatactual

3.83.432.6Time

First cycleSecond cycleThird cycleFourth cycle

Figure1:Batteryvoltagecurvesindifferentcyclesandthetwovoltagevariationprocesseswerepointedoutbythe

A Method of Remaining Capacity Estimation for LithiumIon Battery鋰離子電池剩余壽

arrows.

2.1

Capacity (Ahr)

1.91.71.51.3Cycle (—)

Actual discharge capacity

Estimated value with observationobtained from sample entropy

Figure2:PredictionofbatteryNo.6.

0.08

Error (%)

0.060.040.02020

40

60

80Cycle (—)

100

120

140

Figure3:Relative

A Method of Remaining Capacity Estimation for LithiumIon Battery鋰離子電池剩余壽

errors.

2.1

Capacity (Ahr)

1.91.71.51.3

1.1

Cycle (—)

Actual discharge capacity

Estimated value with observationobtained from sample entropyEstimated value with observationobtained from charging capacity

Figure4:Comparativesimulationresultsthroughdifferentmeth-ods.

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

AdvancesinMechanicalEngineering

Table1:Capacityestimationfunctionsunderdifferentoptionalconditions.

Dischargerate0.5C1C2C

0.20.10?0.1?0.2?0.3?0.4?0.5

5

Ambienttemperature

4C24°C24°CCapacityestimationfunction

??=(9.6169???0.4326??+0.0035??+0.0001)×10??=(?1.1240??3+0.0154??2?0.0166??+0.0018)×103??=(?7.2590??3+0.3225??2?0.0044??+0.00003)×105

Table2:RMSerrorsandpeakerrorsofbatteryNo.55.Startingpoint??10152025

RMSerror(%)

3.262.642.302.24

Peakerror(%)

13.227.076.755.63

Offset (Ahr)

0510

15202530Temperature (deg)

354045

Figure5:Offsetsatdifferenttemperature.

1.41.31.21.110.90.80.7

Table3:RMSerrorsandpeakerrorsofbatteryNo.31.Startingpoint??101215

RMSerror(%)

2.171.641.37

Peakerror(%)

5.274.223.12

Capacity (Ahr)

0102030

4050Cycle (—)

607080

ActualEstimated

Figure6:PredictionofbatteryNo.55.

1.821.781.741.71.66

5

10

15

2025Cycle (—)

30

35

40

ActualEstimated

Figure7:PredictionofbatteryNo.31.

1.61.2

0.8

0.400

5

10

15

2025Cycle (—)

303540

ActualEstimated

Figure8:PredictionofbatteryNo.39.

temperature4°Cand43°Carearound?0.38and0.02.Asamatteroffact,higherorlowertemperatureaffectstheactualdischargecapacity.Onaccountofthehigherambi-enttemperature,theinternalsubstancesaremoreactiveresultinginalargerdischargecapacity.Onthecontrary,thelowertemperaturesslowdownthephysicochemicalreactionsinsidethebatteryleadingtothefactthattheactualcapacitycannotreachthemaximum.Inaconstantdischargecurrentmode,itisreasonableandessentialtomodifythecapacityobservationsinPFalgorithm.Thus,accordingtothepreviouscalculations,afunctionalrelationshipbetweenambienttemperaturesandestimationoffsetsisestablishedthroughquadraticcurvefitting.ThefittingresultisgiveninFigure5.

Theselectedoffsetbenchmarkiszeroat24°C.Figures6and7showthepredictionresultsofbatteryNo.55(4°C,1??)andNo.31(43°C,2??).Bothtwooffsetsareseparately?0.38and0.02.Asisexpected,thepredictioncurvesarebasicallyconsistentwiththeactualones.

Tables2and3showtheRMSerrorsandpeakerrorsatdifferentpredictionstartingpoints.Theresultsindicatethatasthenumberofhistoricalcapacitydataisincreasing,errorshavethedownwardtrends.

BatteryNo.39istestedunderamultioperatingworkingcondition.Thefirstseveraldischargecyclesaretestedat24°C,2??andtheothersat44°C,0.5??.Thecorrespondingcapacityestimationfunctionshouldbeselectedinaccordancewiththeoperatingcondition.Asoneoftherelevantfunctionsisbuiltat4°C,0.5??,theactualoffsetat44°Cshouldbeincreasedto0.398ratherthan0.018inFigure5.ThepredictionresultofbatteryNo.39ispresentedinFigure8andtheRMSerroris5.78%.

Figure9showsthecontrastivepredictionresult.Withouttheconsiderationof??-rateandambienttemperature,theestimationperformsmuchworsewith27.56%RMSerror.

Capacity (Ahr)

Capacity (Ahr)

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

A Method of Remaining Capacity Estimation for LithiumIon Battery鋰離子電池剩余壽命估計(jì)方法.doc下載

6

1.61.2

0.8

AdvancesinMechanicalEngineering

Capacity (Ahr)

Acknowledgments

ThisresearchisfinanciallysupportedbytheNationalNat-uralScienceFoundationofChina(no.51107021)andtheFundamentalResearchFundsfortheCentralUniversities(Grantno.HIT.NSRIF.2014021).WesincerelyappreciatethesignificanthelpontranslationbyMiss.HanWang.

0.400

5

10

15

2025Cycle (—)

303540

ActualEstimated

References

[1]Q.ZhangandR.E.White,“Capacityfadeanalysisofalithiumioncell,”JournalofPowerSources,vol.179,no.2,pp.793–798,2008.

[2]M.DubarryandB.Y.Liaw,“Identifycapacityfadingmechanism

inacommercialLiFePO4cell,”JournalofPowerSources,vol.194,no.1,pp.541–549,2009.

[3]J.Lee,O.Nam,andB.H.Cho,“Li-ionbatterySOCestimation

methodbasedonthereducedorderextendedKalmanfiltering,”JournalofPowerSources,vol.174,no.1,pp.9–15,2007.

[4]F.Sun,X.Hu,Y.Zou,andS.Li,“AdaptiveunscentedKalman

filteringforstateofchargeestimationofalithium-ionbatteryforelectricvehicles,”Energy,vol.36,no.5,pp.3531–3540,2011.[5]S.Lee,J.Kim,J.Lee,andB.H.Cho,“State-of-chargeandcap-acityestimationoflithium-ionbatteryusinganewopen-circuitvoltageversusstate-of-charge,”JournalofPowerSources,vol.185,no.2,pp.1367–1373,2008.

[6]A.J.Salkind,C.Fennie,P.Singh,T.Atwater,andD.E.Reisner,

“Determinationofstate-of-chargeandstate-of-healthofbatter-iesbyfuzzylogicmethodology,”JournalofPowerSources,vol.80,no.1,pp.293–300,1999.

[7]J.Gomez,R.Nelson,E.E.Kalu,M.H.Weatherspoon,andJ.P.

Zheng,“Equivalentcircuitmodelparametersofahigh-powerLi-ionbattery:thermalandstateofchargeeffects,”JournalofPowerSources,vol.196,no.10,pp.4826–4831,2011.

[8]S.M.Pincus,“Approximateentropyasameasureofsystem

complexity,”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,vol.88,no.6,pp.2297–2301,1991.[9]A.Widodo,M.-C.Shim,W.Caesarendra,andB.-S.Yang,“Int-elligentprognosticsforbatteryhealthmonitoringbasedonsampleentropy,”ExpertSystemswithApplications,vol.38,no.9,pp.11763–11769,2011.

[10]M.Abbas,A.A.Ferri,M.E.Orchard,andG.J.Vachtsevanos,

“Anintelligentdiagnostic/prognosticframeworkforautomo-tiveelectricalsystems,”inProceedingsoftheIEEEIntelligentVehiclesSymposium(IV’07),pp.352–357,Istanbul,Turkey,June2007.

[11]B.SahaandK.Goebel,“ModelingLi-ionbatterycapacitydep-letioninaparticlefilteringframework,”inProceedingsoftheAnnualConferenceofthePrognosticsandHealthManagementSociety,2009.

[12]K.Goebel,B.Saha,A.Saxena,J.R.Celaya,andJ.P.Christopher-sen,“Prognosticsinbatteryhealthmanagement,”IEEEInstru-mentationandMeasurementMagazine,vol.11,no.4,pp.33–40,2008.

[13]S.Saha,B.Saha,andK.Goebel,“Distributedprognostichealth

managementwithGaussianprocessregression,”inProceedingsoftheConferenceoftheSocietyforMachineryFailurePreventionTechnology(MFPT’09),April2009.

[14]B.Saha,K.Goebel,andJ.Christophersen,“Comparisonofpro-gnosticalgorithmsforestimatingremainingusefullifeofbat-teries,”TransactionsoftheInstituteofMeasurementandControl,vol.31,no.3-4,pp.293–308,2009.

Figure9:Comparativeprediction.

Alargeamountofdischargedatasetswillberequiredmainlyforestablishmentofasetofcapacityestimationfunctions.Thechoiceofaproperfunctioninaccordancewiththeworkingconditionisnecessaryfortheimplementofalgorithm.Otherwise,ittakesaboutaperiodof200msproportionaltothenumberofestimationpointstocompletepredictionforeachcycle.

5.Conclusions

Thispaperfocusesondevelopinganintelligentpredictionmethodofbatterycapacitythroughparticlefilterandsampleentropy.Underacertainoptionalcondition,afunctionalrelationshipofsampleentropyanddischargecapacityiscre-ated.TheestimationscomputedfromthefunctionaretakenasobservationstopropagateparticlesinPF.Whenfacingamultioperatingworkingcondition,thispaperbuildsthreefunctionsconsideringdifferent??-ratesunderdifferentambi-enttemperatures.Itisakeypointtoselectacorrespondingcapacityestimationfunctionandtomodifytheobservationbytemperature.Onaccountofgoodtrackingcapabilities,PFalgorithmisappliedtodeterminetheunknownparametersandfulfillthepredictionwithbetterstatisticalcalculations.Thepredictionresultcanreflectthecapacityfadingbehaviorsandhasahigheraccuracywithnotmorethan5%RMSerrorofbatteryNo.6.Comparedwithothermethods,prognosticaccuracyhasbeengreatlyimprovedunderalargerangeofcyclingconditionswithlessthan6%RMSerror.

Inaddition,thoughthepredictionresultshavebeensatisfactory,therestillleavesconsiderableroomforimprove-ments.Ourmethodisnotfitforpracticalapplicationnow,fortheambienttemperatureand??-ratesareconstantsinonecycleinourwork.Whenfacingadynamiccycle,suchasacomplexcurrent,itsimpactoncapacitycouldbeequivalentlyseenasaconstantone,whichseemstobeaconsiderablesolution.Withanimprovingunderstandingoftheseimpactsonbatterycapacity,theprognosticperformancecanbefurtherrefined.

ConflictofInterests

Theauthorsdeclarethatthereisnoconflictofinterestsregardingthepublicationofthispaper.

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

AdvancesinMechanicalEngineering

[15]K.West,T.Jacobsen,andS.Atlung,“Modelingofporousinser-

tionelectrodeswithliquidelectrolyte,”JournaloftheElectro-chemicalSociety,vol.129,no.7,pp.1480–1485,1982.

[16]M.Park,X.Zhang,M.Chung,G.B.Less,andA.M.Sastry,“A

reviewofconductionphenomenainLi-ionbatteries,”JournalofPowerSources,vol.195,no.24,pp.7904–7929,2010.

[17]G.H.Kim,A.Pesaran,andR.Spotnitz,“Athree-dimensional

thermalabusemodelforlithium-ioncells,”JournalofPowerSources,vol.170,no.2,pp.476–489,2007.

[18]X.Hu,S.Li,andH.Peng,“Acomparativestudyofequivalent

circuitmodelsforLi-ionbatteries,”JournalofPowerSources,vol.198,pp.359–367,2012.

[19]J.S.RichmanandJ.R.Moorman,“Physiologicaltime-series

analysisusingapproximateandsampleentropy,”AmericanJour-nalofPhysiology:HeartandCirculatoryPhysiology,vol.278,no.6,pp.H2039–H2049,2000.7

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

久久建筑網(wǎng)brightonrobinsfc.com提供大量:建筑圖紙、施工方案、工程書(shū)籍、建筑論文、合同表格、標(biāo)準(zhǔn)規(guī)范、CAD圖紙等內(nèi)容。


TOP最近更新內(nèi)容

    語(yǔ)言學(xué)概論筆記 2013 3月二級(jí)c無(wú)紙化題庫(kù) 郭碩鴻 電動(dòng)力學(xué) 山東省威海市2011屆高三模擬考試(數(shù)學(xué)文) 建筑裝飾裝修工程施工質(zhì)量驗(yàn)收規(guī)范(GB5021 富士康科技公司基礎(chǔ)IE培訓(xùn)--現(xiàn)場(chǎng)改善.ppt 系統(tǒng)防雷方案 刑法的二十個(gè)鉆石考點(diǎn) 【阮齊林】 DLT 1080.4-2010 電力企業(yè)應(yīng)用集成 配電管 南京理工大學(xué)考研計(jì)算機(jī)復(fù)試上機(jī)題目 梁凱恩 ——《福布斯導(dǎo)師商學(xué)院》精華 宋鴻兵語(yǔ)錄 德隆的資本運(yùn)作與行業(yè)整合 ANSYS工程結(jié)構(gòu)數(shù)值分析命令查詢表 PS技術(shù) 在學(xué)校里 學(xué)三年 也學(xué)不到這么多x